Números Irracionais

Os números irracionais englobam os números decimais infinitos não periódicos, dentre eles podemos destacar o número pi.

Os números irracionais possuem a principal característica de não possuírem representação na forma fracionária. Eles são números decimais infinitos não periódicos, isto é, sua composição à direita da vírgula não admite formação de períodos. Os números irracionais possuem destaque na evolução da matemática, dentre os mais importantes temos o número π (pi = 3,14159265), o número de Euler (e = 2,718281828459045235360287471352662497 ), o número de ouro (Φ = 1,618033989). As raízes referentes a números que não possuem quadrados perfeitos também são consideradas irracionais. Observe:

√2 = 1,4142135623730950488016887242097...
√3 = 1,7320508075688772935274463415059 ...
√5 = 2,2360679774997896964091736687313 ...
√8 = 2,8284271247461900976033774484194 ...
√11 = 3,3166247903553998491149327366707 ...
√20 = 4,4721359549995793928183473374626 ...


O numeral pi surge da relação existente entre o comprimento da circunferência e seu diâmetro. O número de ouro é resultado da divisão entre os elementos numéricos da sequência de Fibonacci. O teorema de Pitágoras contribuiu na descoberta de números irracionais, principalmente aqueles ligados a radicais.

Não pare agora... Tem mais depois da publicidade ;)


Aproveite para conferir nossa videoaula sobre o assunto:

Conjunto dos irracionais

Conjunto dos irracionais

Por: Marcos Noé

Artigos relacionados

Módulo ou Valor Absoluto

Definição e exemplos

Curiosidades sobre os números

Conheça algumas curiosidades matemáticas relacionadas aos números

Quatro conteúdos básicos de Matemática para o Enem

Veja os quatro conteúdos básicos que certamente cairão no Enem e confira indicações de estudo para não se dar mal no exame!

Números reais

Clique para conhecer o conjunto dos números reais, bem como alguns exemplos de seus elementos e as propriedades e operações básicas desse conjunto.

Reta numérica

Clique para aprender o que é uma reta numérica, como ela pode ser construída, sua definição formal e alguns objetos que utilizam seus princípios.

Valor de pi

Descubra o valor de pi, número relacionado com o comprimento dos círculos. Conheça uma aproximação desse decimal infinito e aprenda também uma forma de calcular o valor aproximado desse número. Esse método, criado por Arquimedes, utiliza polígonos inscritos e circunscritos em uma circunferência.

Conjunto dos irracionais

Números, Conjunto numéricos, Conjunto dos racionais, Conjunto dos irracionais, Número irracionais, Conjunto dos inteiros, Conjunto dos naturais, Dízimas periódicas, Casas decimais, Parte inteira.

Propriedades da Potenciação

Operação entre Potências.

Potenciação

Representando uma multiplicação de fatores iguais.