Radiciação

A radiciação é a operação inversa à potenciação. Podemos resolvê-la utilizando a fatoração.

Você já ouviu falar em números quadrados perfeitos? Os quadrados perfeitos são o resultado da multiplicação de qualquer número por ele mesmo. Por exemplo, o 9 é um quadrado perfeito, pois ele é o resultado de 3 x 3 ou, melhor ainda, porque ele é o resultado da potência 32 (lê-se três elevado a dois ou três ao quadrado).

Nós temos uma forma mais usual de representar um número que é tido como quadrado perfeito. Para representá-lo, nós utilizamos a raiz quadrada. Por exemplo, se procuramos a “raiz quadrada de 4”, pretendemos descobrir qual é o número que, ao quadrado (o número multiplicado por si mesmo), resulta em 4. Facilmente podemos dizer que o número que procuramos é o 2, pois 22 = 4. Por essa razão, dizemos que a radiciação é a operação inversa à potenciação. Vejamos como representar uma raiz quadrada:

Os elementos que compõem a radiciação são o radical, o índice, o radicando e a raiz
Os elementos que compõem a radiciação são o radical, o índice, o radicando e a raiz

O radical (símbolo em vermelho) indica que se trata de uma radiciação, e o índice caracteriza a operação, isto é, o tipo de raiz que estamos trabalhando. Em geral, o radicando é o número sobre o qual somos questionados, e a raiz é o resultado.

Nesse exemplo, estamos procurando a raiz quadrada de 4, isto é, queremos saber qual é o número que multiplicado por ele mesmo resulta em quatro. Facilmente podemos concluir que esse número é o 2, pois 22 = 4.

Mas e se por acaso quisermos saber qual é o número que multiplicado por si mesmo 3 vezes resulta em 8? Precisamos então procurar o número que, ao cubo, resulta em 8, isto é:

? 3 = 8

? x ? x ? = 8

Esse exemplo já exige um pouco mais de raciocínio. Mas podemos afirmar que o número que ocupa o lugar dos quadradinhos é o 2, pois 23 = 2 x 2 x 2 = 8. Veja que acabamos de trabalhar com uma raiz cúbica, pois o índice da raiz é três. Sua representação é:

3√8 = 2, pois 23 = 2 x 2 x 2 = 8

Mas haveria uma forma mais fácil de realizar a radiciação? Sim, há! Através da fatoração, conseguimos encontrar qualquer raiz exata, independentemente do índice. Vejamos alguns exemplos:

Não pare agora... Tem mais depois da publicidade ;)

1. √64

Precisamos encontrar a raiz quadrada de 64. Atenção: sempre que não aparece um número no índice, trata-se de uma raiz quadrada, cujo índice é 2. Vamos fatorar o radicando 64, isto é, vamos dividi-lo sucessivas vezes pelo menor número primo possível até que cheguemos ao quociente 1:

64 | 2
32 | 2
16 | 2
 
8 | 2
 4 | 2
 
2 | 2
1| 

Do lado direito, apareceram seis números 2. Ao multiplicá-lo (2x2x2x2x2x2), encontramos o número 64. Então, em vez de escrevermos o 64, podemos colocar essa multiplicação dentro da raiz:

√64

√2x2x2x2x2x2

Como estamos trabalhando como uma raiz quadrada, nós agruparemos os números dentro da raiz de dois em dois, elevando-os ao quadrado:

√22x22x22

Feito isso, aqueles números que possuem o expoente dois podem sair da raiz. Eles saem sem o seu expoente, mas continuam com o símbolo da multiplicação, portanto:

√64 – 2x2x2 – 8

Portanto, a raiz quadrada de 64 é 8.

2. 3√729

Agora estamos trabalhando com uma raiz cúbica, ou uma raiz de índice três. Devemos procurar um número que, multiplicado por si mesmo três vezes, chega ao valor do radicando. Vamos novamente fatorar nosso radicando, dividindo-o sempre pelo menor número primo possível:

729 | 3
243 | 3
 
81 | 3
 
27 | 3
   
9 | 3
   
3 | 3
 1 | 

Como estamos lidando com uma raiz de índice 3, nós vamos agrupar os números iguais que apareceram à direita em trios, com expoente 3. Novamente aqueles números que possuem expoente que coincide com o índice do radicando poderão sair da raiz. Vejamos:

3√729

3√3x3x3x3x3x3

3√33x33

3√729 = 3x3 = 9

Portanto, a raiz cúbica de 729 é 9.

3) 4√3125

Nesse exemplo, temos uma raiz quarta. Logo, ao fatorarmos o radicando, deveremos agrupar os números da direita de quatro em quatro. Vejamos:

3125 | 5
  625 | 5
  125 | 5
    25 | 5
      5 | 5
   ?
1 |

À direita, apareceram cinco números cinco. Logo, podemos observar que, ao juntarmos grupos de 4, alguém ficará sozinho. Ainda assim, realizaremos esse processo:

4√3125

4√5x5x5x5x5

4√54x5

4√3125 = 54√5

Infelizmente, não conseguimos concluir essa radiciação, dizemos então que ela não é exata.

A fatoração do radicando é um procedimento que nos permite efetuar a radiciação independentemente do índice do radical e até mesmo se a radiciação não possuir raiz exata, como ocorreu no último exemplo. 

 

Aproveite para conferir nossas videoaulas relacionadas ao assunto:

Você sabe qual é a raiz quadrada de 4?

Você sabe qual é a raiz quadrada de 4?

Por: Amanda Gonçalves Ribeiro

Artigos relacionados

Propriedades da radiciação

Você tem dificuldade de efetuar cálculos com raízes? Conheça as propriedades da radiciação e aprenda a simplificá-los!

Aplicação das propriedades da radiciação

Você sabe como aplicar as propriedades da radiciação? Confira nossas dicas e veja como facilitar o cálculo de raízes!

Multiplicação e divisão de radicais

Você sabe como fazer multiplicação e divisão de radicais com mesmo índice? E com índices distintos? Confira nossas dicas para esses dois casos!

Adição e subtração de radicais

Você sabe como calcular a adição e a subtração de radicais? Confira nossos exemplos e tire todas as suas dúvidas!

Racionalização de denominadores

Aprenda a fazer a racionalização de denominadores e veja como solucionar corretamente frações com raízes no denominador!

Potenciação e radiciação de radicais

Confira algumas dicas para tornar mais simples os cálculos envolvidos na potenciação e radiciação de radicais!

Raiz quadrada aproximada

Sabe aquela aflição que surge quando a raiz de um número não é exata? Tranquilize-se, acesse aqui e descubra como calcular a raiz quadrada aproximada.

Cálculo de raízes não exatas por meio de fatoração

Clique para aprender como deve ser feito o cálculo de raízes não exatas por meio da fatoração e as propriedades dos radicais que garantem isso!

Método de completar quadrados

Clique e aprenda a calcular raízes de equações do segundo grau pelo método de completar quadrados, uma alternativa à fórmula de Bhaskara.

Operações matemáticas básicas

Aprenda o que são as operações matemáticas básicas, algumas das propriedades dessas operações e o modo como elas se relacionam.

Divisão com números decimais

Clique e aprenda uma das técnicas que podem ser usadas para resolver divisões que envolvem números decimais no divisor, no dividendo ou em ambos. Essa técnica visa a simplificar a divisão substituindo divisor e dividendo por números inteiros cuja divisão é equivalente aos decimais dados.

Propriedades da multiplicação

Clique e aprenda as cinco propriedades da multiplicação: comutatividade, associatividade, existência de elemento neutro, existência de inverso multiplicativo e propriedade distributiva. Obtenha exemplos comentados de cada uma delas e veja como elas podem facilitar e agilizar os cálculos de multiplicação.

Potenciação e radiciação de frações

Saiba como calcular potências e raízes de números fracionários.

Potenciação

Representando uma multiplicação de fatores iguais.