Grandezas Inversamente Proporcionais

As grandezas inversamente proporcionais ocorrem quando uma grandeza é dobrada de valor, a outra é reduzida à metade.

Tudo aquilo que pode ser medido ou contado é considerado uma grandeza. Podemos considerar como grandeza as circunstâncias que evolvem comprimento, tempo, temperatura, massa, preço, idade e etc. Entendemos por grandezas inversamente proporcionais as situações onde ocorrem operações inversas, isto é, se dobramos uma grandeza, a outra é reduzida à metade. Um exemplo típico de grandezas inversas são o tempo e a velocidade. Observe o exemplo a seguir:

A distância entre duas cidades é de aproximadamente 200 km. Um veículo com velocidade média de 50 km/h gastou 4 horas para fazer esse percurso. Caso ele dobrasse a velocidade, o tempo gasto seria de 2 horas. Nesse caso observamos que ao aumentar a velocidade do automóvel, o tempo da viagem diminui. Veja a tabela:

Velocidade (km/h)            Tempo (h)
    50                             4
   x 2                           : 2
  100                             2

Isso acontece porque velocidade e tempo são inversamente proporcionais.

Exemplo 2

Para encher um tanque são necessárias 60 vasilhas de 6 litros cada uma. Se forem usadas vasilhas de 2 litros cada uma, quantas serão necessárias?

Número de                        Capacidade da
  Vasilhas                           Vasilha (litros) 

60                                         6    
x 3                                       : 3     
180                                         2      

Não pare agora... Tem mais depois da publicidade ;)

A capacidade da vasilha foi diminuída três vezes, dessa forma, necessitaremos de 180 vasilhas. Portanto, as grandezas vasilhas e capacidade da vasilha são inversamente proporcionais, pois à medida que a capacidade diminui, o número de vasilhas aumenta.

Exemplo 3

Pedro deseja realizar sua festa de aniversário e para isso irá comprar 30 latas de refrigerante com capacidade de 200 ml cada uma, no intuito de evitar desperdício. Caso ele opte por comprar latas de 600 ml, quantas ele deverá comprar?

Número de                       Capacidade da
latas                                 lata (ml)

30                                      200  
: 3                                       x 3   
10                                      600   

Observe que ele irá comprar 30 latas de 200 ml cada, resultando em 6000 ml (6 litros). Caso a capacidade da lata aumente, ele deverá comprar uma quantidade menor de latas afim de não ultrapassar os 6 litros previstos. A capacidade da lata aumentou em três vezes e a quantidade de lata foi dividida por três, constituindo grandezas inversamente proporcionais.


Videoaula relacionada:

A velocidade é um tipo de grandeza

A velocidade é um tipo de grandeza

Por: Marcos Noé

Artigos relacionados

Conjunto dos Números Racionais

Clique e aprenda mais sobre o conjunto dos números racionais!

Grandezas Diretamente Proporcionais

Confira aqui alguns problemas envolvendo as grandezas diretamente proporcionais!

Grandezas direta e inversamente proporcionais

Clique e aprenda o que são grandezas direta e inversamente proporcionais e entenda como elas devem ser usadas na regra de três.

Grandezas escalares

Você sabe o que são grandezas escalares? Clique aqui e veja a definição e suas características!

Grandezas escalares e vetoriais

Você sabe a diferença entre grandezas escalares e vetoriais? Clique aqui e descubra!

Número misto

fração, o que é uma fração, identificação de uma fração, representação de uma fração, divisão, partes iguais, idéia de fração, leitura de fração, numerador, denominador, fração imprópria, fração própria, fração aparente, número misto, trasformação de número misto em fração imprópria.

O Conceito de Razão

Para obter uma razão é necessário relacionar dois números. Clique e entenda!

Proporção

Aprenda o que é proporção e suas principais propriedades, bem como entenda o que são grandezas direta e inversamente proporcionais.

Regra de três composta

Clique e aprenda o passo a passo do cálculo de regra de três composta e obtenha exemplos resolvidos e comentados.

Regra de três simples

Aprenda a resolver problemas utilizando regra de três simples e entenda a relação dela com as grandezas direta e inversamente proporcionais.

Regra de três simples com grandezas diretamente proporcionais

Estudo da regra de três simples utilizando grandezas diretamente proporcionais. A regra de três simples um conceito que relaciona três valores com a finalidade de determinar o valor desconhecido de uma grandeza.

Teorema de Tales

Tales de Mileto desenvolveu uma teoria matemática que ficou conhecida como: Teorema de Tales. Confira!

Três erros comuns na regra de três

Clique para ver os três erros mais comuns cometidos na regra de três e a maneira de resolver exercícios sem cometer esses deslizes.