<

Adição e subtração de fração algébrica

A adição e a subtração de fração algébrica são possíveis porque essas frações são compostas apenas por números, sendo alguns conhecidos e outros não.

Sinal que simboliza a adição
Sinal que simboliza a adição

Frações algébricas são expressões que possuem pelo menos uma incógnita no denominador. Incógnitas são números desconhecidos de uma expressão algébrica. Dessa maneira, essas expressões são formadas apenas por números – conhecidos ou desconhecidos – e por operações. Por essa razão, valem todas as operações matemáticas básicas para as frações algébricas e suas propriedades.

São exemplos de frações algébricas:

a)

1
x

b)

2x4y2
3kh

Adição e subtração de frações algébricas

A adição e a subtração de frações algébricas ocorrem da mesma maneira que a adição e subtração de frações numéricas.

1º caso: Denominadores iguais

Quando os denominadores de uma adição ou subtração de frações algébricas são iguais, conserve o denominador no resultado e realize a soma ou subtração apenas nos numeradores. Por exemplo:

28x + 15x = 28x + 15x = 43x
yx2     yx2         yx2         yx2

2º caso: Denominadores diferentes

Quando os denominadores das frações algébricas forem diferentes, a adição ou subtração seguirá os mesmos princípios da adição ou subtração de frações numéricas: primeiramente, faz-se o MMC dos denominadores; depois, encontram-se frações equivalentes com denominadores iguais ao MMC e, por fim, faz-se a soma/subtração. Veja o exemplo abaixo:

1 + x +    4x2   1 – x
1 – x      1 – x2    1 + x

Etapa 1: Calcule o mínimo múltiplo comum entre os denominadores.

Para isso, é necessário saber fatorar polinômios, especialmente pelos casos da diferença de dois quadrados, trinômio quadrado perfeito e fator comum em evidência. No exemplo, a fração central apresenta um denominador que pode ser fatorado pela diferença de dois quadrados. Os outros dois não podem ser fatorados.

Dessa maneira, trocando o denominador da fração central por sua forma fatorada teremos:

1 + x +         4x2      1 – x
1 – x    (1 – x)(1 + x)    1 + x

Não pare agora... Tem mais depois da publicidade ;)

Assim, o mínimo múltiplo comum entre os denominadores será (1 – x)(1 + x). Para saber como realizar esse cálculo, clique aqui.

Etapa 2: Encontrar frações equivalentes.

Com o MMC em mãos, divida-o pelo denominador de cada fração do exemplo e multiplique o resultado pelo respectivo numerador. Isso gerará as frações equivalentes com denominadores iguais – o próprio MMC –, que devem ser somadas/subtraídas. No exemplo, os resultados serão:

1 + x +         4x2         1 – x =     (1 + x)2            4x2           (1 – x)2     
1 – x     (1 – x)(1 + x)    1 + x    (1 – x)(1 + x)    (1 – x)(1 + x)    (1 – x)(1 + x)

Observe que, dividindo o MMC por 1 – x, que é o denominador da primeira fração, o resultado será 1 + x. Multiplicando isso por 1 + x, que é o numerador da primeira fração, teremos o numerador da respectiva fração equivalente. Repete-se o processo para todas as frações até obter o resultado acima.

Etapa 3: Somar/subtrair os numeradores.

Encontradas as frações equivalentes, basta somar ou subtrair os numeradores e simplificar o resultado. Observe:

     (1 + x)2     +        4x2        –     (1 – x)2     
(1 – x)(1 + x)    (1 – x)(1 + x)    (1 – x)(1 + x)

1 + 2x + x2 + 4x2 – (1 – 2x + x2)
(1 – x)(1 + x)

1 + 2x + x2 + 4x2 – 1 + 2x – x2
(1 – x)(1 + x)

     4x + 4x2    
(1 – x)(1 + x)

     4x(1 + x)    
(1 – x)(1 + x)

    4x    
(1 – x)

Por: Luiz Paulo Moreira Silva

Artigos relacionados

Adição e subtração de frações

Clique para aprender a realizar de uma vez por todas a adição e a subtração de frações de maneira prática!

Expressão algébrica

Expressão, Expressão numérica, Expressão algébrica, Operação, Termos semelhantes, monômios, monômios semelhantes, operar termo semelhantes, Valor numérico, Fator comum.

Expressão numérica

Clique aqui para aprender a resolver uma expressão numérica!

Fatoração de Polinômios

Aplicando técnicas de fatoração em polinômios.

Frações algébricas

Clique para aprender o que são frações algébricas e como realizar as operações matemáticas básicas que as envolvem.

Frações equivalentes

Descubra o que são frações equivalentes e por que elas são iguais.

Multiplicação de fração algébrica

Clique para aprender o modo correto de realizar uma multiplicação entre frações algébricas!

Mínimo Múltiplo Comum (MMC) de Polinômios

Aprenda a determinar o Mínimo Múltiplo Comum (MMC) de polinômios utilizando regras de fatoração.

Mínimo múltiplo comum e Máximo divisor comum

mínimo múltiplo comum, mmc, máximo divisor comum, mdc, múltiplo, divisor, como calcular múltiplos, como calcular divisores, calcular o mmc, calcular mdc, cálculo do mínimo múltiplo comum, cálculo do máximo divisor comum.

Porcentagem

Clique e aprenda o que são porcentagens e entenda como esse conceito relaciona quantidades a uma escala de 0 a 100. Descubra também como essa forma de representar quantidades pode ser obtida por meio de frações com denominador igual a 100 e ser calculada com a regra de três, conceito que simplifica esses cálculos.

Simplificação de fração algébrica

Aprenda o passo a passo necessário para a simplificação de fração algébrica de modo simples e obtenha exemplos desse tipo de cálculo!

Simplificação de frações

Clique para aprender o que é simplificação de frações, como simplificá-las e como encontrar as chamadas frações irredutíveis.

Sistemas lineares com duas equações: método da adição

Clique para aprender a resolver sistemas lineares com duas equações e duas incógnitas pelo método da adição.