Conservação da energia mecânica

À medida que o patinador sobe a rampa, sua energia potencial aumenta e a cinética diminu

Desde os primeiros estudos sobre um sistema físico, sabemos que a energia mecânica pode ser modificada, mas nada dela se perde. Por vários anos, diversos trabalhos, nas mais variadas áreas, direcionaram para a formulação de uma lei fundamental denominada lei da conservação da energia. Quando ela é encarada como um dos pilares da construção do universo, referimo-nos a ela como Princípio da Conservação da Energia.

Voltemos às forças conservativas: elas foram assim denominadas por causa dessa lei. Sistemas em que apenas as forças conservativas realizam trabalho conservam a energia mecânica (observe que o sistema pode apresentar outras forças, desde que elas não realizem trabalho).

No estudo da mecânica, as forças gravitacional e elástica são caracterizadas como sendo forças conservativas. Então, sistemas nos quais apenas essas duas forças realizam trabalho apresentam a energia mecânica inicial igual à energia mecânica final. Vejamos alguns exemplos:

Suponhamos que temos um ponto material, e que esse ponto material seja lançado para cima, em uma região de vácuo, na superfície da Terra. No decorrer de sua subida, a energia potencial desse ponto material aumenta, enquanto que sua energia cinética diminui de tal forma que a soma entre essas duas energias seja sempre constante. Ao descer, a energia potencial é gradualmente transformada em energia cinética.

Já em um sistema massa-mola sem atrito, quando o bloco é deslocado do ponto de referência (O) e depois abandonado, verificamos a conservação da energia mecânica em qualquer ponto durante seu movimento oscilatório.

Se houver trabalho de forças não conservativas, a energia mecânica não se conservará, isto é, ela pode diminuir ou aumentar. As forças não conservativas cujo trabalho provoca diminuição da energia mecânica são denominadas forças dissipativas. É o caso da força de atrito de escorregamento e da força de resistência do ar.

Vamos supor que um corpo em movimento possua, num ponto A, energia cinética, energia potencial gravitacional e energia elástica. Ao passar por um outro ponto, B, ele possuirá energia cinética, energia potencial gravitacional e energia potencial elástica . Se apenas forças conservativas realizarem trabalho, a lei da conservação da energia mecânica garante que:

EcA +Ep(g)A+EeA=EcB+Ep(g)B +EeB

As situações nas quais o princípio da conservação da energia mecânica é válido são ideais. Rigorosamente, elas são raríssimas. Forças dissipativas, como a resistência do ar e os atritos, são praticamente inevitáveis. Para esses sistemas, o trabalho realizado pelas forças dissipativas corresponde à diferença entre a energia mecânica final e inicial do corpo, desde que o sistema não permita a entrada de energia:

τFdissipativa = Emf - Emi

Na equação acima temos:

τ – trabalho da força dissipativa
Emf – energia mecânica final
Emi – energia mecânica inicial

Aproveite para conferir as nossas videoaulas relacionadas ao  assunto:

Por: Domiciano Correa Marques da Silva

Artigos Relacionados

Últimas Aulas

Variações linguísticas no Enem
Teorema da bissetriz interna
Segunda lei de Mendel
Fórmulas de Física para arrasar nas provas
Todas as vídeo aulas

Versão completa